Reinvestigation of the Structure of K₂FeF₅

A. LE BAIL, A. DESERT,* AND J. L. FOURQUET

Laboratoire des Fluorures UA CNRS 449, and *Laboratoire de Physique de l'Etat Condensé, UA CNRS 807, Faculté des Sciences, Université du Maine, Route de Laval, 72017 Le Mans Cedex, France

Received July 21, 1989; in revised form October 16, 1989

The structure of K₂FeF₅ is reinvestigated: space group *Pbcn*, Z = 16, a = 7.4059(4), b = 12.8771(9), c = 20.4282(13) Å (previous proposition: S.G. *Pn*₂₁*a* with *c*, *a*, *b* permutation). R = 0.036 ($R_w = 0.040$) for 1663 reflections and 149 parameters. All essential features of the previous description are maintained. © 1990 Academic Press, Inc.

1. Introduction

During a recent investigation of the thermal dehydration of $(NH_4)_2FeF_5 \cdot H_2O$, two phases were evidenced (1): $\beta \cdot (NH_4)_2FeF_5$ which is isostructural with $(NH_4)_2MnF_5$ (2) and $\alpha \cdot (NH_4)_2FeF_5$ which exhibits a new structural type. The structure resolution of the α phase was realized by X-ray powder diffraction technique; strong structural correlations with the K₂FeF₅-type were observed. If $\alpha \cdot (NH_4)_2FeF_5$ crystallizes in the centrosymmetric space group *Pbcn* (unambiguously), then some doubt arises about the description of K₂FeF₅ in the noncentrosymmetric space group *Pn2*₁*a* (3). Therefore, the structure was reinvestigated.

2. Experimental

Single crystals were prepared in a platinum crucible by the horizontal Bridgman method, from a mixture of 0.495 KF + 0.505 FeF₃. They were obtained together with KFeF₄ crystals from which they can be easily separated.

A colorless transparent crystal was selected. Data were collected on an AED2 Siemens-Stoe four circles diffractometer.

The systematic extinctions were not consistent with the previously retained space group $Pn2_1a$ (or Pnma) but with the nonequivocally centrosymmetric Pbcn space group, when an appropriate parameters permutation was performed. The experimental details of the data collection are given in Table I. Refinements were performed using the SHELX-76 program (4). Ionic scattering factors and anomalous dispersion terms were taken from *International Tables for X-ray Crystallography* (5). The refinements converge rapidly to R =0.059 in the isotropic approximation (65 parameters) and R = 0.036 ($R_w = 0.040$)¹ with

408

 $^{^{1}}F_{o}$ and F_{c} values may be obtained by request from J. L. Fourquet.

	1 ,
	Crystal data
Space group	Pbcn (No. 60)
Cell dimensions,	a = 7.4059(4) Å, $b = 12.8771(9)$ Å,
(from 40 reflections)	c = 20.4282(13) Å
Ζ	16
Density (calcd)	3.123 g cm^{-3}
Crystal size	$0.042 \times 0.114 \times 0.076$ mm
μ (ΜοΚα)	48.08 cm^{-1}
Int	ensity measurement
<u>Т</u>	20°C
Radiation	$MoK\alpha$ (graphite monochromatized)
Scan mode	$\omega/2\theta$
Max 20	60°
Standard reflections	3 measured every 90 min
Reciprocal space explored	$0 \le h \le 10$
	$-4 \leq k \leq 18$
	$0 \leq l \leq 28$
Reflections measured	3383 total, 2367 unique
Raverage	0.0266
Absorption correction	Gauss method
Min, max transmission	0.524, 0.784
Structure	e solution and refinements
Reflections included	1663 with $I > 3\sigma(I)$
Parameters refined	149
Weighting scheme	$w = 0.966/[\sigma^2(F) + 0.0011 F^2]$
Isotropic extinction	$F_c = F (1 - gxF^2/\sin \theta), g = 5.0(8) \times 10^{-8}$

 $R = 0.036, R_w = 0.040$

 $0.7; -0.7 \text{ e/Å}^3$

TABLE I

CONDITIONS OF DATA	COLLECTION AND	REFINEMENT FOR K₂FeF₅
--------------------	----------------	--

anisotropic thermal motion for all atoms (149 parameters, 1663 reflections).

Agreement factors

 $(\Delta \rho) \max; (\Delta \rho) \min$

3. Results and Discussion

As shown in Fig. 1, all essential features of the previous structural description are maintained. The coordinates and anisotropic thermal parameters are given in Table II, selected interatomic distances and angles in Table III. Some understandable anomalies appearing in the previous study (Fe-F and K-F distances as short as 1.804 and 2.539 Å, respectively) are rectified. The usual shortening of the four Fe-F terminal bonds is confirmed. The K⁺ coordinations were given as being 9 and 10. In fact, we observe a clear cut of the K-F distances near 3.25 Å, the next nearest F neighbors being at 3.5 Å, so the K⁺ coordinations are 11 (K2, K4), 10 (K3, K5), and 9 (K1). However, K1 could be considered as eightfold coordinated because the 9th F is clearly at a very much longer distance than the others (0.35 Å more).

In the A_2BF_5 -type compounds, three are

BRIEF COMMUNICATIONS

	Atomic Coordinates and Thermal Parameters of K ₂ FeF ₅									
	x	y	z	<i>U</i> 11	U22	<i>U</i> 33	U23	<i>I</i> 13	<i>U</i> 12	B_{eq} [Å ²]
KI	0	729(1)	2500	164(7)	162(7)	147(6)	0(0)	13(6)	0(0)	1.24(5)
K2	0	5374(1)	2500	189(-8)	164(7)	293(-8)	0(0)	-59(7)	0(-0)	1.70(6)
K3	1593(2)	216(1)	4163(1)	252(6)	290(-6)	174(-5)	-35(4)	-20(5)	73(-6)	1.88(4)
K4	1472(2)	7881(1)	1634(1)	257(6)	247(6)	235(5)	75(5)	-44(5)	-62(5)	1.95(4)
K5	4886(2)	2321(1)	-65(1)	172(5)	178(6)	186(4)	-21(-4)	7(4)	25(4)	1.41(-4)
Fel	6684(1)	20(0)	4219(0)	89(3)	99(-3)	91(-3)	-1(2)	10(-3)	-3(3)	0.73(2)
Fe2	3372(1)	8030(1)	3286(0)	89(-3)	116(3)	86(3)	-1(2)	4(3)	-6(3)	0.76(2)
Fl	-59(5)	1986(2)	1406(1)	293(18)	187(14)	220(14)	-14(12)	103(14)	90(14)	1.84(12)
F2	4957(5)	9046(2)	3767(1)	214(16)	218(14)	246(14)	-72(12)	-41(13)	-79(13)	1.78(12)
F3	0	5000	0	206(23)	289(25)	187(19)	31(16)	-153(19)	2(18)	1.79(17)
F4	0	3218(3)	2500	188(22)	279(22)	155(18)	0(-0)	-116(17)	0(0)	1.64(16)
F5	2978(4)	2057(2)	2790(1)	243(17)	265(16)	163(13)	-36(12)	11(13)	122(13)	1.77(12)
F6	2223(4)	8801(2)	402(1)	186(16)	176(14)	248(14)	-40(11)	-14(12)	-43(12)	1.60(11)
F7	4724(5)	1098(2)	1119(2)	324(20)	219(15)	325(15)	-77(13)	-50(15)	-126(15)	2.28(13)
F8	1817(5)	9925(2)	1518(1)	310(18)	280(16)	182(13)	46(12)	165(14)	59(15)	2.03(12)
F9	1791(4)	9098(2)	5299(1)	258(17)	263(16)	185(12)	-38(12)	-20(13)	-159(14)	1.86(12)
F10	2070(5)	9199(2)	2966(1)	242(18)	247(16)	254(14)	44(13)	-13(13)	128(14)	1.96(13)
F11	3098(4)	2986(2)	4038(1)	209(16)	350(16)	146(12)	-31(12)	-94(13)	80(14)	1.86(12)

TABLE 11 Atomic Coordinates and Thermal Parameters of K3FeF4

Note. Standard deviations are given in parentheses and refer to the last digit. x, y, z, and U_{ij} are $\times 10^4$. The U_{ij} relate to the expression $T = \exp[-2\pi^2(h^2a^{*2}U_{11} + \ldots + 2klb^*c^*U_{23})]$.

FIG. 1. Projection of the K_2FeF_5 structure on the (100) plane (K atoms are those of the unit cell only).

FIG. 2. Projection of the Rb_2CrF_5 structure on the (100) plane (Rb atoms are those of the unit cell only).

Fe1	F7		Fe 1 oc	tahedror F	n (Fe-F) 9	= 1.932	F	77	F3
F7	1.869(.	3) 2	2.754(4)	2.7:	55(4)	3.785(3)	2.6	64(4)	2.695(3)
F8	94.7(3)	1	.876(3)	2.7	91(3)	2.718(3)	2.7	08(4)	3.897(3)
F9	94.6(3)	96	5.0(3)	1.8	80(3)	2.733(3)	3.8	93(2)	2.715(3)
F6	170.9(2)	91	.2(3)	91.7	(3)	1.928(2)	2.7	10(4)	2.700(3)
F2	86.5(3)	88	3.1(3)	175.70	(2)	86.8(3)	2.0	15(3)	2.802(2)
F3	87.5(2)	175	.3(2)	88.00	(2)	86.1(2)	87.8	(2)	2.025(0)
			Fe2 oct	ahedron	(Fe-F)	= 1.934			
Fe2	F11	F1		F5		F10	F	32	F4
F11	1.883(2	2) 2.747(4)		2.818(3)		2.693(3)	2.6	99(4)	3.901(4)
Fl	93.6(3)	(3) 1.885(3		2.717(4)		3.780(3)	2.6	76(3)	2.740(3)
F5	96.4	91	.8	1.897(3)		2.782(4)	3.9	08(2)	2.729(3)
F10	90.7(3)	172	2.3(2)	94.1	(3)	1.903(3)	2.700(4)		2.686(3)
F2	87.6(3)	86	5.6(3)	175.8	(2)	87.1(3)	2.0	13(3)	2.800(3)
F4	174.7(3)	89	0.0(2)	88.20	(2)	86.3(2)	87.8	(2)	2.023(0)
				Bridgin	g angles				
Fe1F2	-Fe2	176.2(1)		F3-Fe1	18	0.0(1)	Fe2F4-	-Fe2	166.3(2)
			K Pol	yhedron	s K~F <	< 3.5 Å			
		К				K	2		
		2 × F8	2 628(3)			2 × F5	2 700(3)		
		$2 \times F10$	2.620(3)			F4	2.777(4)		
		$2 \times F1$	2.760(3)			$2 \times F10$	2.812(3)		
		- · · · ·	2.700(3)			$2 \times F7$	2.012(3)		
		$2 \times F5$	2.853(3)			2 X F/	2.9/9(3)		
		2 × F5 F4	2.853(3) 3.205(4)			$2 \times F/$ $2 \times F2$	2.979(3) 3.103(3)		
		2 × F5 F4	2.853(3) 3.205(4)			$2 \times F^7$ $2 \times F^2$ $2 \times F^8$	2.979(3) 3.103(3) 3.149(3)		
		$2 \times F5 \\ F4 \\ \langle K1-F \rangle$	2.853(3) 3.205(4) 2.781			$2 \times F7$ $2 \times F2$ $2 \times F8$ $\langle K2-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933		
	K3	$2 \times F5 \\ F4 \\ \langle K1-F \rangle$	2.853(3) 3.205(4) 2.781	k	٤4	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	k	\$5
F9	K3	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5	2.621(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	F6	2.642(3)
F9 F10	K3 2.734(3) 2.797(3)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8	2.621(3	$2 \times F^{2}$ $2 \times F^{2}$ $2 \times F^{3}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6	2.642(3) 2.673(3)
F9 F10 F1	K3 2.734(3) 2.797(3) 2.800(3)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7	2.621(3 2.654(3 2.677(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11	2.642(3) 2.673(3) 2.715(3)
F9 F10 F1 F6	K3 2.734(3) 2.797(3) 2.800(3) 2.868(3)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6	2.621(3 2.654(3 2.677(3 2.836(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9	2.642(3) 2.673(3) 2.715(3) 2.731(3)
F9 F10 F1 F6 F9	K3 2.734(3) 2.797(3) 2.800(3) 2.868(3) 2.868(3) 2.875(3)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11	2.621(3 2.654(3 2.677(3 2.836(3 2.836(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1	2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3)
F9 F10 F1 F6 F9 F11	K3 2.734(3) 2.797(3) 2.800(3) 2.865(3) 2.875(3) 2.893(3)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1	2.621(3 2.654(3 2.677(3 2.836(3 2.836(3 2.933(4	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$ $(K^{2}-F)$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F1	2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3) 2.888(3)
F9 F10 F1 F6 F9 F11 F8	K3 2.734(3) 2.797(3) 2.800(3) 2.868(3) 2.875(3) 2.893(3) 2.908(4)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1 F5	2.621(3 2.654(3 2.677(3 2.836(3 2.836(3 2.933(4 3.035(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$ $(K^{2}-F)$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F7 F1	2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3) 2.888(3) 2.897(3)
F9 F10 F1 F6 F9 F11 F8 F7	K3 2.734(3) 2.800(3) 2.868(3) 2.875(3) 2.893(3) 2.908(4) 3.010(4)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1 F5 F2	2.621(3 2.654(3 2.677(3 2.836(3 2.836(3 2.933(4 3.035(3 3.035(3 3.149(3	$2 \times F^{7}$ $2 \times F^{2}$ $2 \times F^{8}$ $\langle K^{2}-F \rangle$ $(K^{2}-F)$ $(K$	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F1 F7 F11 F2	 2.642(3) 2.673(3) 2.715(3) 2.781(3) 2.881(3) 2.897(3) 2.995(3)
F9 F10 F1 F6 F9 F11 F8 F7 F7	K3 2.734(3) 2.797(3) 2.800(3) 2.868(3) 2.875(3) 2.893(3) 2.908(4) 3.010(4) 3.022(4)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1 F5 F2 F4	2.621(3 2.654(3 2.677(3 2.836(3 2.836(3 2.933(4 3.035(3 3.035(3 3.149(3 3.149(3 3.149(3	$ \begin{array}{c} 2 \times F^{7} \\ 2 \times F^{2} \\ 2 \times F^{3} \\ \langle K^{2}-F \rangle \end{array} $	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F1 F7 F11 F2 F3	 2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3) 2.897(3) 2.995(3) 2.993(1)
F9 F10 F1 F6 F9 F11 F8 F7 F7 F2 F3	K3 2.734(3) 2.797(3) 2.800(3) 2.868(3) 2.875(3) 2.893(3) 2.908(4) 3.010(4) 3.022(4) 3.061(2)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1 F5 F2 F4 F10	2.621(3 2.654(3 2.677(3 2.836(3 2.933(4 3.035(3 3.035(3 3.149(2 3.229(4	$ \begin{array}{c} 2 \times F^{7} \\ 2 \times F^{2} \\ 2 \times F^{2} \\ 2 \times F^{8} \\ \langle K^{2}-F \rangle \end{array} $	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F7 F11 F2 F3 F9	 2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3) 2.897(3) 2.993(1) 3.024(3)
F9 F10 F1 F6 F9 F11 F8 F7 F2 F3	K3 2.734(3) 2.800(3) 2.868(3) 2.875(3) 2.893(3) 2.908(4) 3.010(4) 3.022(4) 3.061(2)	2 × F5 F4 (K1-F)	2.853(3) 3.205(4) 2.781	F5 F8 F7 F6 F11 F1 F5 F2 F4 F10 F10	2.621(3 2.654(3 2.677(3 2.836(3 2.933(4 3.035(3 3.035(3 3.149(2 3.229(4 3.229(4 3.237(3	$ \begin{array}{c} 2 \times F^{7} \\ 2 \times F^{2} \\ 2 \times F^{2} \\ 2 \times F^{8} \\ \langle K^{2}-F \rangle \end{array} $	2.979(3) 3.103(3) 3.149(3) 2.933	F6 F6 F11 F9 F1 F7 F11 F2 F3 F9	2.642(3) 2.673(3) 2.715(3) 2.731(3) 2.881(3) 2.888(3) 2.897(3) 2.965(3) 2.993(1) 3.024(3)

TABLE III Interatomic Distances (Å) and Angles (°) for K_2FeF_5

FIG. 3. Projection of the α -(NH₄)₂FeF₅ structure on the (100) plane.

now known to be made up with octahedral zig-zag *cis* chains: K_2FeF_5 , Rb_2CrF_5 (6) (Fig. 2), and α -(NH₄)₂FeF₅ (1) (Fig. 3). These three structural types provide an in-

teresting series for the intercomparison of one-dimensional magnetic behavior.

4. Acknowledgments

One of the authors (A.D.) would like to thank Professor J. Nouet and G. Niesseron for providing her with single crystals of K_2FeF_5 .

References

- J. L. FOURQUET, A. LE BAIL, H. DUROY, AND M. C. MORON, Eur. J. Solid State Inorg. Chem. 26, 435 (1989).
- 2. R. SEARS AND J. L. HOARD, J. Chem. Phys. 50, 1066 (1969).
- 3. M. VLASSE, G. MATEJKA, A. TRESSAUD, AND B. M. WANKLYN, Acta Crystallogr. Sect. B 33, 3377 (1977).
- G. M. SHELDRICK, "SHELX 76: Program for Crystal Structure Determination." University of Cambridge (1976).
- "International Tables for X-ray Crystallography" (J. A. Ibers and W. C. Hamilton, Eds.), Vol. IV, Kynoch Press, Birmingham (1974).
- 6. C. JACOBONI, R. DE PAPE, M. POULAIN, J. Y. LE MAROUILLE, AND D. GRANJEAN, Acta Crystallogr. Sect B 30, 2688 (1974).